Is Linux Right for You?

 You want to switch from DOS/Windows to Linux? Good idea, but beware:

 it might not be useful for you. IMHO, there is no such thing as ``the

 best computer'' or ``the best operating system'': it depends on what

 one has to do. That's why I don't believe that Linux is the best

 solution for everyone, even if it's technically superior to many

 commercial OS's. You're going to benefit immensely from Linux if what

 you need is sw for programming, the Internet, TeX... technical sw in

 general, but if you mostly need commercial sw, or if you don't feel

 like learning and typing commands, look elsewhere.

 Linux is not (for now) as easy to use and configure as Windows or the

 Mac, so be prepared to hack quite a bit. In spite of these warnings,

 let me tell you that I'm 100% confident that if you belong to the

 right user type you'll find in Linux your computer Nirvana. It's up to

 you. And remember that Linux + DOS/Windows can coexist on the same

 machine, anyway.

 Last word is, every computer scientists have to know using Linux.

 Prerequisites for this howto: I'll assume that

 o you know the basic DOS commands and concepts;

 o Linux, possibly with X Window System, is properly installed on your

 PC;

 o your shell---the equivalent of COMMAND.COM---is bash;

 o you understand that this guide is only an incomplete primer. For

 more information, please refer to Matt Welsh's ``Linux Installation

 and Getting Started'' and/or Larry Greenfield's ``Linux User

 Guide'' (www.linux.org.tr).

A few things to point out before going on:

 o first, how to get out. To quit Linux: if you see a text mode

 screen, press CTRL-ALT-DEL, wait for the system to fix its innards

 and tell you everything is OK, then switch off the PC. If you are

 working under X Window System, press CTRL-ALT-BACKSPACE first, then

 CTRL-ALT-DEL. Never switch off or reset the PC directly: this could

 damage the file system;
 o unlike DOS, Linux has built-in security mechanisms, due to its

 multiuser nature. Files and directories have permissions associated

 to them, and therefore some cannot be accessed by the normal user;

 (see Section ``Permissions''). Only the user whose login name is

 ``root'' has the power. (This guy's the system administrator. If

 you work on your own PC, you'll be root as well.) DOS, on the

 contrary, will let you wipe out the entire contents of your hard

 disk;

 o most of the power and flexibility of UNIX comes from the simple

 concepts of redirection and piping, more powerful than under DOS.

 Simple commands can be strung together to accomplish complex tasks.

 Do use these features!

 o conventions: <...> means something that must be specified, while

 [...] something optional. Example:

 $ tar -tf <file.tar> [> redir_file]

 file.tar must be indicated, but redirection to redir_file is optional.

 o from now on ``RMP'' means ``please read the man pages for further

 information''.

 If you need more than a table of commands, please refer to the

 following sections.

Files: Preliminary Notions

 Linux has a file system---meaning by that ``the structure of

 directories and files therein''---very similar to that of DOS. Files

 have filenames that obey special rules, are stored in directories,

 some are executable, and among these most have command switches.

 Moreover, you can use wildcard characters, redirection, and piping.

 There are only a few minor differences:

 o under DOS, file names are in the so-called 8.3 form; e.g.

 NOTENOUG.TXT. Under Linux we can do better. If you installed Linux

 using a file system like ext2 or umsdos, you can use longer

 filenames (up to 255 characters), and with more than one dot in

 them: for example, This_is.a.VERY_long.filename. Please note that I

 used both upper and lower case characters: in fact...

 o upper and lower case characters in file names or commands are

 different. Therefore, FILENAME.tar.gz and filename.tar.gz are two

 different files. ls is a command, LS is a mistake; Linux is a case

 sensitive environment.

 o Windows 95 users will want to use long file names under Linux, of

 course. If a file name contains spaces (not recommended but

 possible), you must enclose the file in double quotes whenever your

 refer to it. For example:

 $ # the following command makes a directory called "My old files"

 $ mkdir "My old files"

 $ ls

 My old files bin tmp

 Some characters shouldn't but can be used: some are !*$&. I won't tell

 you how, though.

 o there are no compulsory extensions like .COM and ..EXE for

 programs, or .BAT for batch files. Executable files are marked by

 an asterisk '*' at the end of their name when you issue the ls -F

 command. For example:

$ ls -F

 I_am_a_dir/ cindy.jpg cjpg* letter_to_Joe my_1st_script* old~

The files cjpg* and my_1st_script* are executable---``programs''.

 Under DOS, backup files end in .BAK, while under Linux they end with a

 tilde as hidden. Example: the file .I.am.a.hidden.file won't show up

 after the ls command;

 o DOS program switches are obtained with /switch, Linux switches with

 -switch or --switch. Example: dir /s becomes ls -R. Note that many

 DOS programs, like PKZIP or ARJ, use UNIX-style switches.

 You can now jump to Section ``Translating Commands from DOS to

 Linux'', but if I were you I'd read on.

Symbolic Links

 UNIX has a type of file that doesn't exist under DOS: the symbolic

 link. This can be thought of as a pointer to a file or to a

 directory, and can be used instead of the file or directory it points

 to; it's similar to Windows 95 shortcuts. Examples of symbolic links

 are /usr/X11, which points to /usr/X11R6; /dev/modem, which points to

 either /dev/cua0 or /dev/cua1.

 To make a symbolic link:

 $ ln -s <file_or_dir> <linkname>

 Example:

 $ ln -s /usr/doc/g77/DOC g77manual.txt

 Now you can refer to gccmanual.txt instead of /usr/doc/gcc/DOC. Links

 appear like this in directory listings:

 $ ls -F

 gccmanual.txt@

 $ ls -l

 (various things...) gccmanual.txt -> /usr/doc/gcc/DOC

Permissions and Ownership

 DOS files and directories have the following attributes: A (archive),

 H (hidden), R (read-only), and S (system). Only H and R make sense

 under Linux: hidden files start with a dot, and for the R attribute,

 read on.

 Under UNIX a file has ``permissions'' and an owner, who in turn

 belongs to a ``group''. Look at this example:

$ ls -l /bin/ls

 -rwxr-xr-x 1 root bin 27281 Aug 15 1995 /bin/ls*

 The first field contains the permissions of the file /bin/ls, which

 belongs to root, group bin. Leaving the remaining information aside

 (Matt's book is there for that purpose), remember that -rwxr-xr-x

 means, from left to right:

 - is the file type (- = ordinary file, d = directory, l = link, etc);

 rwx are the permissions for the file owner (read, write, execute); r-x

 are the permissions for the group of the file owner (read, execute);

 (I won't cover the concept of group, you can survive without it as

 long as you're a beginner ;-) r-x are the permissions for all other

 users (read, execute).

 This is why you can't delete the file /bin/ls unless you are root: you

 don't have the write permission to do so. To change a file's

 permissions, the command is:

$ chmod <whoXperm> <file>

 where who is u (user, that is owner), g (group), o (other), X is

 either + or -, perm is r (read), w (write), or x (execute). Examples:

 $ chmod u+x file

 this sets the execute permission for the file owner. Shortcut: chmod

 +x file.

 $ chmod go-wx file

 this removes write and execute permission for everyone but the owner.

 $ chmod ugo+rwx file

 this gives everyone read, write, and execute permission.

 # chmod +s file

 this makes a so-called ``setuid'' or ``suid'' file---a file that

 everyone can execute with its owner's privileges. Typically, you'll

 come across root suid files.

 A shorter way to refer to permissions is with numbers: rwxr-xr-x can

 be expressed as 755 (every letter corresponds to a bit: --- is 0, --x

 is 1, -w- is 2, -wx is 3...). It looks difficult, but with a bit of

 practice you'll understand the concept.

 root, being the so-called superuser, can change everyone's file

 permissions. There's more to it---RMP.

Translating Commands from DOS to Linux

 On the left, the DOS commands; on the right, their Linux counterpart.

 COPY: cp

 DEL: rm

 MOVE: mv

 REN: mv

 TYPE: more, less, cat

 Redirection and plumbing operators: < > >> |

 Wildcards: * ?

 nul: /dev/null

 prn, lpt1: /dev/lp0 or /dev/lp1; lpr

 - EXAMPLES -

 DOS Linux

 C:\GUIDO>COPY JOE.TXT JOE.DOC $ cp joe.txt joe.doc

 C:\GUIDO>COPY *.* TOTAL $ cat * > total

 C:\GUIDO>COPY FRACTALS.DOC PRN $ lpr fractals.doc

 C:\GUIDO>DEL TEMP $ rm temp

 C:\GUIDO>DEL *.BAK $ rm *~

 C:\GUIDO>MOVE PAPER.TXT TMP\ $ mv paper.txt tmp/

 C:\GUIDO>REN PAPER.TXT PAPER.ASC $ mv paper.txt paper.asc

 C:\GUIDO>PRINT LETTER.TXT $ lpr letter.txt

 C:\GUIDO>TYPE LETTER.TXT $ more letter.txt

 C:\GUIDO>TYPE LETTER.TXT $ less letter.txt

 C:\GUIDO>TYPE LETTER.TXT > NUL $ cat letter.txt > /dev/null

 n/a $ more *.txt *.asc

 n/a $ cat section*.txt | less

 Notes:

 o * is smarter under Linux: * matches all files except the hidden

 ones; .* matches all hidden files; *.* matches only those that have

 a '.' in the middle, followed by other characters; p*r matches both

 `peter' and `piper'; *c* matches both `picked' and `peck';

 o when using more, press SPACE to read through the file, `q' or CTRL-

 C to exit. less is more intuitive and lets you use the arrow keys;

 o there is no UNDELETE, so think twice before deleting anything;

 o in addition to DOS < > >>, Linux has 2> to redirect error messages

 (stderr); moreover, 2>&1 redirects stderr to stdout, while 1>&2

 redirects stdout to stderr;

 o Linux has another wildcard: the []. Use: [abc]* matches files

 starting with a, b, c; *[I-N,1,2,3] matches files ending with I, J,

 K, L, M, N, 1, 2, 3;

 o there is no DOS-like RENAME; that is, mv *.xxx *.yyy won't work.

 You could try this simple script; see Section ``Shell Scripts'' for

 details.

 #!/bin/sh

 # ren: rename multiple files according to several rules

 if [$# -lt 3] ; then

 echo "usage: ren \"pattern\" \"replacement\" files..."

 exit 1

 fi

 OLD=$1 ; NEW=$2 ; shift ; shift

 for file in $*

 do

 new=`echo ${file} | sed s/${OLD}/${NEW}/g`

 mv ${file} $new

 done

 Beware: it doesn't behave like DOS REN, as it uses ``regular expres-

 sions'' that you still don't know. Shortly, if you simply want to

 change file extensions, use it as in: ren "htm$" "html" *htm. Don't

 forget the $ sign.

 o use cp -i and mv -i to be warned when a file is going to be

 overwritten.

Running Programs: Multitasking and Sessions

 To run a program, type its name as you would do under DOS. If the

 directory (Section ``Directories'') where the program is stored is

 included in the PATH (Section ``System Initialisation''), the program

 will start. Exception: unlike DOS, under Linux a program located in

 the current directory won't run unless the directory is included in

 the PATH. Escamotage: being prog your program, type ./prog.

 This is what the typical command line looks like:

 $ command -s1 -s2 ... -sn par1 par2 ... parn < input > output

 where -s1, ..., -sn are the program switches, par1, ..., parn are the

 program parameters. You can issue several commands on the command

 line:

 $ command1 ; command2 ; ... ; commandn

 That's all about running programs, but it's easy to go a step beyond.

 One of the main reasons for using Linux is that it is a multitasking

 os---it can run several programs (from now on, processes) at the same

 time. You can launch processes in background and continue working

 straight away. Moreover, Linux lets you have several sessions: it's

 like having many computers to work on at once!

 o To switch to session 1..6:

 $ ALT-F1 ... ALT-F6

 o To start a new session without leaving the current one:

 $ su - <loginname>

 Example:

 $ su - root

 This is useful, for one, when you need to mount a disk (Section

 ``Floppies''): normally, only root can do that.

 o To end a session:

 $ exit

 If there are stopped jobs (see later), you'll be warned.

 o To launch a process in foreground:

 $ progname [-switches] [parameters] [< input] [> output]

 o To launch a process in background, add an ampersand '&' at the end

 of the command line:

 $ progname [-switches] [parameters] [< input] [> output] &

 [1] 123

 the shell identifies the process with a job number (e.g. [1]; see

 below), and with a PID (123 in our example).

 o To see how many processes there are:

 $ ps -a

 This will output a list of currently running processes.

 o To kill a process:

 $ kill <PID>

 You may need to kill a process when you don't know how to quit it the

 right way... ;-). Sometimes, a process will only be killed by either

 of the following:

 $ kill -15 <PID>

 $ kill -9 <PID>

 In addition to this, the shell allows you to stop or temporarily sus-

 pend a process, send a process to background, and bring a process from

 background to foreground. In this context, processes are called

 ``jobs''.

 o To see how many jobs there are:

 $ jobs

 here jobs are identified by their job number, not by their PID.

 o To stop a process running in foreground (it won't always work):

 $ CTRL-C

 o To suspend a process running in foreground (ditto):

 $ CTRL-Z

 o To send a suspended process into background (it becomes a job):

 $ bg <job>

 o To bring a job to foreground:

 $ fg <job>

 o To kill a job:

 $ kill <%job>

 where <job> may be 1, 2, 3, ... Using these commands you can format a

 disk, zip a bunch of files, compile a program, and unzip an archive

 all at the same time, and still have the prompt at your disposal. Try

 this with DOS! And try with Windows, just to see the difference in

 performance.

Running Programs on Remote Computers

 To run a program on a remote machine whose IP address is

 remote.bigone.edu, you do:

 $ telnet remote.bigone.edu

 After logging in, start your favourite program. Needless to say, you

 must have an account on the remote machine.

 If you have X11, you can even run an X application on a remote

 computer, displaying it on your X screen. Let remote.bigone.edu be the

 remote X computer and local.linux.box be your Linux machine. To run

 from local.linux.box an X program that resides on remote.bigone.edu,

 do the following:

 o fire up X11, start an xterm or equivalent terminal emulator, then

 type:

 $ xhost +remote.bigone.edu

 $ telnet remote.bigone.edu

 o after logging in, type:

 remote:$ DISPLAY=local.linux.box:0.0

 remote:$ progname &

 (instead of DISPLAY..., you may have to write setenv DISPLAY

 local.linux.box:0.0. It depends on the remote shell.)

 Et voila! Now progname will start on remote.bigone.edu and will be

 displayed on your machine. Don't try this over a ppp line though, for

 it's too slow to be usable.

Translating Commands from DOS to Linux

 DIR: ls, find, du

 CD: cd, pwd

 MD: mkdir

 RD: rmdir

 DELTREE: rm -R

 MOVE: mv

 - EXAMPLES -

DOS Linux

 C:\GUIDO>DIR $ ls

 C:\GUIDO>DIR FILE.TXT $ ls file.txt

 C:\GUIDO>DIR *.H *.C $ ls *.h *.c

 C:\GUIDO>DIR/P $ ls | more

 C:\GUIDO>DIR/A $ ls -l

 C:\GUIDO>DIR *.TMP /S $ find / -name "*.tmp"

 C:\GUIDO>CD $ pwd

 n/a - see note $ cd

 ditto $ cd ~

 ditto $ cd ~/temp

 C:\GUIDO>CD \OTHER $ cd /other

 C:\GUIDO>CD ..\TEMP\TRASH $ cd ../temp/trash

 C:\GUIDO>MD NEWPROGS $ mkdir newprogs

 C:\GUIDO>MOVE PROG .. $ mv prog ..

 C:\GUIDO>MD \PROGS\TURBO $ mkdir /progs/turbo

 C:\GUIDO>DELTREE TEMP\TRASH $ rm -R temp/trash

 C:\GUIDO>RD NEWPROGS $ rmdir newprogs

 C:\GUIDO>RD \PROGS\TURBO $ rmdir /progs/turbo

Notes:

 1. when using rmdir, the directory to remove must be empty. To delete

 a directory and all of its contents, use rm -R (at your own risk).

 2. the character '~' is a shortcut for the name of your home

 directory. The commands cd or cd ~ will take you to your home

 directory from wherever you are; the command cd ~/tmp will take you

 to /home/your_home/tmp.

 3. cd - ``undoes'' the last cd.

Managing Devices

 You have never thought about it, but the DOS command FORMAT A: does a

 lot more work than it seems. In fact, when you issue the command

 FORMAT it will: 1) physically format the disk; 2) create the A:\

 directory (= create a filesystem); 3) make the disk available to the

 user (= mount the disk).

 These three steps are addressed separately under Linux. You can use

 floppies in MS-DOS format, though other formats are available and are

 better---the MS-DOS format won't let you use long filenames. Here is

 how to prepare a disk (you'll need to start a session as root):

 o To format a standard 1.44 meg floppy disk (A:):

 # fdformat /dev/fd0H1440

 o To create a filesystem:

 # mkfs -t ext2 -c /dev/fd0H1440

 To create an MS-DOS filesystem, use msdos instead of ext2. Before

 using the disk, you must mount it.

 o To mount the disk:

 # mount -t ext2 /dev/fd0 /mnt

or

mount -t msdos /dev/fd0 /mnt

 Now you can address the files in the floppy. When you've finished,

 before extracting the disk you must unmount it.

 o To unmount the disk:

 # umount /mnt

 Now you can extract the disk. Obviously, you have to fdformat and mkfs

 only unformatted disks, not previously used ones. If you want to use

 drive B:, refer to fd1H1440 and fd1 instead of fd0H1440 and fd0 in the

 examples above.

 All you used to do with A: or B: is now done using /mnt instead.

 Examples:

 DOS Linux

 C:\GUIDO>DIR A: $ ls /mnt

 C:\GUIDO>COPY A:*.* $ cp /mnt/* /docs/temp

 C:\GUIDO>COPY *.ZIP A: $ cp *.zip /mnt/zip

 C:\GUIDO>A: $ cd /mnt

 A:>_ /mnt/$ _

 If you don't like this mounting/unmounting thing, use the mtools

 suite: it's a set of commands that are perfectly equivalent to their

 DOS counterpart, but start with an `m': i.e., mformat, mdir, mdel, and

 so on. They can even preserve long file names, but not file

 permissions. Use these commands as you'd use the DOS commands and rest

 in peace.

 Needless to say, what holds for floppies also holds for other devices;

 for instance, you may want to mount another hard disk or a CD-ROM

 drive. Here's how to mount the CD-ROM:

 # mount -t iso9660 /dev/cdrom /mnt

 This was the ``official'' way to mount your disks, but there's a trick

 in store. Since it's a bit of a nuisance having to be root to mount a

 floppy or a CD-ROM, every user can be allowed to mount them this way:

 o as root, do the following:

 ~# mkdir /mnt/a: ; mkdir /mnt/a ; mkdir /mnt/cdrom

 ~# chmod 777 /mnt/a* /mnt/cd*

 ~# # make sure that the CD-ROM device is right

 ~# chmod 666 /dev/hdb ; chmod 666 /dev/fd*

 o add in /etc/fstab the following lines:

 /dev/cdrom /mnt/cdrom iso9660 ro,user,noauto 0 0

 /dev/fd0 /mnt/a: msdos user,noauto 0 0

 /dev/fd0 /mnt/a ext2 user,noauto 0 0

 Now, to mount a DOS floppy, an ext2 floppy, and a CD-ROM:

 $ mount /mnt/a:

 $ mount /mnt/a

 $ mount /mnt/cdrom

 /mnt/a, /mnt/a:, and /mnt/cdrom can now be accessed by every user.

 Remember that allowing everyone to mount disks this way is a gaping

 security hole, if you care.

System Initialisation Files

 Two important files under DOS are AUTOEXEC.BAT and CONFIG.SYS, which

 are used at boot time to initialise the system, set some environment

 variables like PATH and FILES, and possibly launch a program or batch

 file. Under Linux there are several initialisation files, some of

 which you had better not tamper with until you know exactly what you

 are doing. I'll tell you what the most important are, anyway:

 FILES NOTES

 /etc/inittab don't touch for now!

 /etc/rc.d/* ditto

 If all you need is setting the $PATH and other environment variables,

 or you want to change the login messages or automatically launch a

 program after the login, have a look at the following files:

 FILES NOTES

 /etc/issue sets pre-login message

 /etc/motd sets post-login message

 /etc/profile sets $PATH and other variables,

 etc.

 /etc/bashrc sets aliases and functions, etc.

 /home/your_home/.bashrc sets your aliases + functions

 /home/your_home/.bash_profile or

 /home/your_home/.profile sets environment + starts your

 progs

